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Design of Integer Wavelet Filters for Image Compression
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SUMMARY This paper discusses a method of designing lin-
ear phase two-channel filter banks for integer wavelet transform.
We show that the designed filter banks are easily structed as the
lifting form by leading relationship between designed filters and
lifting structure. The designed integer wavelets are applied to
image compression to verify the efficiency of our method.
key words: JPEG2000, integer wavelet, integer coeÆcients �l-

ter, lifting

1. Introduction

This paper discusses discrete-time wavelet transform
with integer filters, called integer wavelet transform,
and its application to still image compression. Integer
wavelet transform has been investigated since it can be
carried out fast and effectively by shift-and-add oper-
ations. Moreover,the integer wavelet transform with
lifting structure is suitable for both lossless and lossy
image compressions [1]–[3].

This paper has two purposes. The first is to
present a method of designing two-channel linear phase
filter banks composed of filters with integer coefficients,
since it is well known that wavelet transform can be car-
ried out based on filter banks [4]. The method is based
on the method in Refs. [5], [6] and [7], which was devel-
oped for filter banks with floating coefficients. Thus,
this paper shows that the method can also be used for
filter banks with integer coefficients. Although conven-
tional methods of designing filter banks with integer
coefficients are restricted to factorization of maximally-
flat filters into [8], our method does not have this re-
striction. Thus, we can obtain different filter banks
which cannot be obtained by conventional methods.

The second purpose is to verify that the filter banks
obtained by this method are effective for image com-
pression using integer wavelet transform. A couple of
simulations under the JPEG 2000. standard with lift-
ing structures[2] are discussed.
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2. Design Procedure

Figure 1 shows a block diagram of a two-channel filter
bank. One of our purposes is to show how to design
linear phase filters H0(z) and H1(z) that have integer
coefficients and satisfy the perfect reconstruction con-
ditions,

H0(z)H1(−z) − H1(z)H0(−z) = 2z−L, (1)

F0(z) = H1(−z), (2)

F1(z) = −H0(−z). (3)

We use the design method shown in Refs. [5]–[7],
which was proposed for filter banks with floating coef-
ficients.

We first design an analysis highpass filter H1(z),
and then design an analysis lowpass filter H0(z) using
H1(z). We assume that passband amplitude of the an-
alyzer lowpass filter H0(z) is 1, and that of the analyzer
highpass filter H1(z) is 2, since the filters are suitable
for lifting structure.

2.1 Integer Filters

Let us define integer filters. Integer filters enable us to
carry out all calculations by shift-and-add operations.
A Nth-order integer filter H(z) is described as follows.

H(z) = (a0 +a1z
−1 +a2z

−2 + · · ·+aNz−N )/2k,(4)

where ai, (i = 0, 1, · · · , N), N and k are integer num-
bers.

2.2 How to Design Filters

Our design method is summarized as follows.

Fig. 1 Two-channel filter bank.
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Step 1: Designing a half-band highpass filter H1(z).

1-1 Design an order D linear phase lowpass filter H ′
1(z)

whose passband amplitude is equal to 1.
1-2 Modify H ′

1(z) in the form

H1(z) = z−D − H ′
1(z2). (5)

The filter H1(z) becomes a 2D-th order type-I
(deg H1(z) =odd, H1(z) has a symmetrical impulse re-
sponse) highpass filter whose passband amplitude is 2.
It is easily shown that H1(z) in Eq. (5) has integer co-
efficients if H ′

1(z) is an integer filter.
For example, when we choose H ′

1(z) = (−1 +
9z−1+9z−2−z−3)/24, the highpass filter H1(z) is given
by

H1(z) = (1 − 9z−2 + 16z−3 − 9z−4 + z−6)/24. (6)

Its passband amplitude, |H1(π)|, is equal to 2.

Step 2: Choosing an initial solution H ′
0(z).

Next, we choose an initial solution H ′
0(z) which satisfies

Eq. (1) with H1(z). In this paper, we choose

H ′
0(z) = 1 (7)

as one of the solutions. H ′
0(z) and H1(z) always satisfy

Eq. (1) since H1(z) is a halfband filter.

Step 3: Designing a lowpass filter H0(z)

We determine a lowpass filter H0(z) in the form

H0(z) = H ′
0(z)z−J + f(z)H1(z). (8)

When f(z) and J satisfy the conditions below,
H0(z) and H1(z) give a linear-phase perfect reconstruc-
tion filter bank.

A: f(z) is a 2Kth order (K is an arbitrary odd
number) type-I linear phase filter and satisfies

f(z) = f(−z). (9)

B: J = (2D + 2K)/2.
It can also be shown that H0(z) in Eq. (8) has in-

teger coefficients, if H ′
0(z) in Step 2 and f(z) in Step 3

are integer filters.
When we choose f(z) = (−1 + 5z−2 + 5z−4 −

z−6)/24, we obtain H0(z) since Eqs. (6), (7) and (8),

H0(z) = (−1 + 14z−2 − 16z−3 − 31z−4 + 80−5

+164z−6 + 80z−7 − 31z−8

−16z−9 + 14z−10 − z−12)/28.

(10)

Its passband amplitude, |H0(0)|, is equal to 1.
The filter pairs in Eqs. (6) and (10) are prototype

(a) Analyzer

(b) Synthesizer

Fig. 2 Lifting structure of two-channel filter bank.

filters investigated in [2] (referred to as ‘CRF(13,7)’ in
the reference).

Some of integer wavelet filters which was previ-
ously reported can be lead by the proposed method.
In addition to this, it enables us to obtain new integer
wavelet filters.

3. Relationship between Designed Filters and
Lifting Structure

Figure 2 shows a lifting structure of two-channel filter
banks [3]. This structure enables us to realize the filter
bank effectively and to guarantee perfect reconstruction
of the filter bank. In JPEG 2000, integer wavelet will
be realized by lifting structure.

From the relationship between Fig. 1 and Fig. 2, we
obtain the following equations.

H1(z) = −P (z2) + z−D, (11)

H0(z) = {z−J − P (z2)U(z2)} + z−DU(z2)
= z−J + U(z2){−P (z2) + z−D}
= z−J + U(z2)H1(z). (12)

From these equations, Eqs. (5) and (8), we can
show

P (z) = H ′
1(z), (13)

U(z) = f(z
1
2 ), (14)

provided that H ′
0(z) = 1. These equations mean that

the designed filter banks are easily structured as the lift-
ing form. As a result, we can consider effective transfer
functions in the lifting structure when we design filter
banks.

4. Design Examples and Simulation

4.1 Design Examples

In this subsection, we show some filters designed by our



LETTER
489

Table 1 Impulse responses of designed filters.

(a) Example 1 (order = 12, 2)

H′
1(z) [1, 1]/21

H1(z) [−1, 2,−1]/21

f(z) [1,−5, 36, 36,−5, 1]/27

H0(z) [−1, 2, 4,−10,−31, 72, 184, 72,−31,−10, 4, 2,−1]/28

(b) Example 2 (order = 8, 2)

H′
1(z) [1, 1]/21

H1(z) [−1, 2,−1]/21

f(z) [1, 63, 63, 1]/28

H0(z) [−1, 2,−64, 126, 386, 126,−64, 2,−1]/29

(a) Example 1

(b) Example 2

Fig. 3 Frequency responses of the designed filters.

method. Table 1 shows the filter coefficients as vector
forms. Examples 1 and 2 in the table are filters designed
by our method. Their frequency responses are shown
in Fig. 3.

4.2 Applying the Designed Filters to Image Compres-
sion

We applied the designed filters and the sets of filters ,
MIT(9,7), (9,3), CDF(5,3), and CRF(13,7), to still im-
age compression under the JPEG2000 standards with
lifting structures [2]. MIT(9,7), (9,3), CDF(5,3), and
CRF(13,7) are filters investigated in [2].

The gray-scale images we used were ‘Bike,’ ‘Cafe,’
‘Woman’ (2048 × 2560 pixels) and ‘Target’ (512 × 512
pixels).

First, we calculated Peak Signal Noise Ratio

(PSNR) between the original image and the lossy
compressed images using implicit scalar quantiza-
tion(Table 2). In these tables, each column means the
PSNR using the filters.

Next, we verified the case of lossless image com-
pression. Table 3 shows the bit rates of lossless com-
pressed images.

Finally, we evaluated the calculation complexity
for executing the wavelet transform. Table 4 shows the
number of calculations of the filter banks.

From these tables we obtain the following results.

(a)Example 1(13,3)

In the lossy compression, the filter of example 1 has the
almost same performance as the (9,3) filter and the best
performance after the CRF(13,7) filter in the PSNR
evaluation. Moreover we can see that the CRF(13,7)
filter needs 2 multipliers to execute wavelet transform,
although this designed filter does not need any multi-
plier . This is shown at Table 4. When the bit rate
was high, this filter also performed best for all images
except the ‘target’ image.

In the lossless compression,the bit rates of this fil-
ter are lower than the (9,3) filter for all images except
the ‘target’ image.

(b) Example 2(9,3)

In the lossy compression,the filter of example 2 has al-
most the same performance as the CDF(5,3) filter.

In the lossless compression, the bit rates of this
filter are always lower than those of the CDF(5,3) filter.
This filter has the best performance for some images.

The CDF(5,3) filter has the lowest computational
complexity, while the filter of example 2 has the next
lowest complexity,although the difference is very small.

5. Conclusion

In this work, we design some integer filters for discrete
wavelet transforms. The filters are not restricted to fac-
tors of maximally-flat filters and designed filter banks
are easily constructed by the lifting structure. As a
result, It becomes possible to obtain some filters with
better performance than those of the conventional fil-
ters.
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Table 2 PSNR between the original image and the compressed images [dB].

(A) Bike
Example 1 Example 2 MIT(9,7) (9,3) CDF(5,3) CRF(13,7)

Rate (13,3) (a) (9,3) (b) (c) (d) (e) (f)
0.0625 23.54 23.38 23.46 23.57 23.39 23.73
0.125 26.16 26.01 26.09 26.18 26 26.38
0.25 29.35 29.25 29.24 29.37 29.21 29.55
0.5 33.17 33.1 33.06 33.17 33.11 33.31
1 37.58 37.49 37.45 37.53 37.49 37.66
2 42.96 42.89 42.74 42.94 42.96 42.86

(B) Cafe
Example 1 Example 2 MIT(9,7) (9,3) CDF(5,3) CRF(13,7)

Rate (13,3) (a) (9,3) (b) (c) (d) (e) (f)
0.0625 18.95 18.82 18.8 18.95 18.83 18.98
0.125 20.56 20.43 20.46 20.57 20.44 20.67
0.25 22.96 22.86 22.86 22.96 22.88 23.08
0.5 26.56 26.46 26.5 26.56 26.48 26.7
1 31.82 31.78 31.8 31.8 31.78 31.96
2 38.65 38.64 38.54 38.63 38.65 38.63

(C) Woman
Example 1 Example 2 MIT(9,7) (9,3) CDF(5,3) CRF(13,7)

Rate (13,3) (a) (9,3) (b) (c) (d) (e) (f)
0.0625 25.3 25.12 25.16 25.32 25.1 25.47
0.125 27.1 26.93 26.99 27.11 26.9 27.3
0.25 29.59 29.48 29.65 29.61 29.41 29.93
0.5 33.19 33.11 33.24 33.19 33.03 33.47
1 37.84 37.8 37.81 37.83 37.73 38.02
2 42.95 42.88 42.82 42.94 42.95 42.9

(D) Target
Example 1 Example 2 MIT(9,7) (9,3) CDF(5,3) CRF(13,7)

Rate (13,3) (a) (9,3) (b) (c) (d) (e) (f)
0.0625 19.92 19.25 19.71 20.12 19.3 20.48
0.125 22.93 22.38 22.33 23.36 22.42 24.22
0.25 27.25 26.75 27.13 27.67 26.82 28.83
0.5 33.54 33.12 33.79 33.99 33.13 35.02
1 43.04 42.87 42.79 43.18 42.82 43.44
2 58.26 60.57 57.6 58.81 60.88 58.11

Table 3 Bitrates of lossless compressed images [bit/pixel].

Example 1 Example 2 MIT(9,7) (9,3) CDF(5,3) CRF(13,7)
Image (13,3) (a) (9,3) (b) (c) (d) (e) (f)

bike 4.44895 4.43844 4.42338 4.45411 4.44044 4.41897
cafe 5.2466 5.23033 5.21354 5.25316 5.23189 5.2225

target 2.20563 2.14722 2.26202 2.17719 2.14795 2.24756
woman 4.4249 4.41398 4.38445 4.43015 4.41584 4.38553

Table 4 Complexities of filter banks (The number of calculations per a sample).

filter Adds Shifts Multiplies
Example 1(13,3) 10 5 0
Example 2(9,3) 7 3 0

MIT(9,7) 8 2 1
(9,3) 8 4 0

CDF(5,3) 6 2 0
CRF(13,7) 10 2 2
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