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ABSTRACT

In this paper, we propose a secure computation of sparse coding
using a random unitary transform. A cloud computing is spread-
ing in many application fields including applications of the sparse
coding. This situation raises many new privacy concerns. The pro-
posed scheme computes an Orthogonal Matching Pursuit (OMP)
algorithm in an encrypted form, which can be used in practice. We
prove that the proposed secure OMP computation has exact the
same sparse coefficients estimation performance as the OMP al-
gorithm in an unencrypted form theoretically. Then, we apply it to
image modeling based on a image patch model. Finally, we demon-
strate its performance both on synthetic data and in an application
on natural image.
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1. INTRODUCTION

Early work on sparse coding was based on the efficient coding
hypothesis, which assumes that the goal of visual coding is to faith-
fully represent the visual input with minimal neural activity. The
idea goes back to Barlow [1]. It represents observed signals effec-
tively as a linear combination of a small number of bases which
are chosen from the basis functions trained by the algorithm. The
sparse coding model has found numerous applications in process-
ing such as image/video, audio, biological signal, seismic data and
more [2][3].

On the other hand, a cloud computing is spreading in many fields
including applications of the sparse coding. However, the cloud
computing has some serious issues for end users, such as unautho-
rized use and leak of data, and privacy compromise, due to unre-
liability of providers and some accident [4]. Many studies have
been reported for processing encrypted data, which are designed
using homomorphic encryption [5]. While service providers can-
not access directly the content of the encrypted signals, the homo-
morphic encryption can still process in encrypted form to perform
the required signal processing task. Especially, fully homomorphic
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encryption allow arbitrary computation on encrypted data. How-
ever, it requires a specific computation and a high computational
complexity.

Our study focus on a practical and backward compatible secure
computation, which can use existing algorithms. The proposed
scheme is based on a random unitary transform. So far, a lot of
studies on generating efficient random unitary matrices have been
reported [6]-[7] for biometric template protection. In this manuscript,
we propose a secure computation for an Orthogonal Matching Pur-
suit (OMP) algorithm [9]. It is shown that the secure OMP com-
putation enables us not only to encrypt signals, but also to have the
same performance as that of the OMP algorithm in the unencrypted
signals.

Then, we apply it to image modeling. Images are widely used in
the cloud computing. Effectiveness of the sparse coding for image
processing is reported in the area of image compression, image de-
noising and image separation, etc [2]. These application is based
on an image patch model. Here we consider secure sparse coding
for images based on the patch model. The security of image data
from unauthorized uses is important. Based on the secure OMP
computation mentioned above, we propose a secure sparse image
modeling based on the patch model. For example, this model can
be applied to Encryption-then-Compression (EtC) systems [8].

Finally, we demonstrate its results both on synthetic data and in
an application on natural image. The organization of this paper
is as follows. Section 2 describes overview of sparse coding. In
Sec. 3, we propose secure OMP computation. Section 4 introduce
its application to image processing. Section 5 shows simulation
results. Conclusion is given in 6.

2. SPARSE CODING

2.1 Sparse Representation

Using an overcomplete dictionary matrix D = {d,,...,dx} €
R™K that contains K prototype signal-atoms d; for columns, a sig-
nal y = {y1,,...y.} € R" can be represented as a sparse linear
combination of these atoms:

y = Dx. (D

The vector x = {xy, ..., xx} € RX contains the representation coeffi-
cients of the signal y.

If n < K and D is a full-rank matrix, an infinite number of so-
lutions are available for the representation problem. The solution
with the fewest number of nonzero coefficients is certainly an ap-
pealing representation. This sparsest representation is the solution:

(Py) Ir}inllxllo subjectto y = Dx. 2
0
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Figure 1: Secure sparse coding computation architecture.

where ||-||y is the lp-norm, counting the nonzero entries of a vector.
Extraction of the sparsest representation is a NP-hard problem [10].

2.2 Selection of Dictionary Atoms

A selection of dictionary atoms is typically done by a “ pursuit
algorithm ” that finds an approximate solution:

x = arg min|ly — Dx|? subjectto |lxllp < €. 3)

The well known pursuit algorithms are the Matching Pursuit (MP)
[11] and Orthogonal Matching Pursuit (OMP) [9]. These are greedy
algorithms that select the dictionary atoms and calculate the sparse
coefficients sequentially.

The OMP is a greedy step-wise regression algorithm. At each
stage, this method selects the dictionary atom having the maximal
projection onto the residual signal. After each selection, the rep-
resentation coefficients w.r.t. the atoms selected so far are found
via least-squares. Given a signal y € R”, and a dictionary D with
K [,-normalized columns {d; },’f= .- The following presents a formal
description of OMP algorithm.

Orthogonal Matching Pursuit (OMP)

Initialization: £ = 0, and set

- The initial solution x° = 0
- The initial residual r® =y — Dx% =y
- The initial solution support S° = 0.

Main Iteration:
Increment & by 1 and perform the following steps:

- Sweep: Compute the errors

d; -y
() = mind; — P = A - LT )
% lldill3
- Update Support: Find the minimizer
iy = arg min {e(i)},S* = S*' U {ip}. (5)
igSk-1

- Update Provisional Solution: Compute

& = arg min|ly - Dgixgil} = (D}, Dsi)™ (D). (6)

xsk

- Update Residual: Compute r* = y — D¢ X"
- Stopping Rule: If |||, < ¢, stop. Otherwise, apply another
iteration.

Output: The proposed solution ¥ is obtained after k iterations.

Here, we define the atom d; as follows:
d; = Dé; @)
where 8; = [(0,---,0,83),0,---,0)]7 that is equal to zero every-

where except one point (i-th element is 1). The approximation er-
rors €(i) of Eq. (4) can be expressed as follows:

(D§; - 1)

€(i) = min||x; D6; — PG = 1 - DG “)
i i 2

3. SECURE COMPUTATION OF SPARSE COD-

ING

3.1 Secure Computation Architecture

Figure 1 illustrates architectures of the secure sparse coding com-
putation. Figure 1(a) shows a preparation in the local site.

A dictionary D is predetermined (overcomplete wavelets, short-
time-Fourier transforms, curvelets, etc.) or designed by training
algorithms such as MOD [12], K-SVD [13] algorithms. Then a
transform function 7'(-) is applied to the dictionary D to generate
encrypted dictionary D. Then the encrypted dictionary D are sent
to a edge/cloud site and stored into a database.

Figure 1(b) shows a secure computation of a sparse coefficients
selection. The same transform function 7'(-) is applied to a observed
signal y to generate an encrypted observed signal y in the local
site. Then the encrypted signal ¥ is sent to a edge/cloud site. In
the edge/cloud site, by using the encrypted signal y and the stored
dictionary D sent in advance, a secure sparse coding computation
is carried out.

3.2 Random Unitary Transform

Generally, a vector f; (i = 1,---,L) € RY is encrypted by a
unitary matrix @, € C** with a key p as

fi =T(f.p)=0,f ®)

where ﬁ is an encrypted vector, L is the number of vectors. Note
that the umtar.y matrix @, satisfies is encrypted by a unitary matrix
Q, € CVV with a parameter p as

Q,0,=1 ()

where [-]* and I mean the Hermitian transpose operation and the
identity matrix respectively. In addition to the unitarity, @, needs to
have randomness for generating the encrypted signal. The Gram-
Schmidt orthogonalization is a typical method for generating Q,,.
Furthermore, the encrypted vector has following properties [6].

- Property 1: Conservation of the Euclidean distances.

2 PO
i = il = I = Sl (10)
- Property 2: Conservation of inner products.
fifi=1F (1n
- Property 3: Conservation of correlation coefficients.
IS, I, 12
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3.3 Secure OMP Computation

The proposed secure sparse coding computation generages an
encrypted signal y and a dictionary D by the following transform:

y =TO.,p=0,y (13)
b =1(D.p)=0,D. (14)

Instead of Eq. (3), we consider the following optimization problem
that y and D are given:

£=argmin || § - Dx |} subjectto [xlly <e. (15)

We prove that £ obtained by the secure OMP computation is the
same result as the unencrypted version. Giving proof is not straight-
forward way because the OMP algorithm is an approximate tech-
nique. It depend on its algorithm whether the secure OMP compu-
tation provides same result as the unencrypted version.

Secure OMP Computation Algorithm

Initialization: £ = 0, and set

- The initial solution x° = 0

- The initial residual # = § - Dx° = § = Q,y
- The initial solution support S° =

Main Iteration:
Increment & by 1 and perform the following steps:

- Sweep: Compute the errors

In Eq. (4), the dictionary D and the residual 7*~! are replaced with
D and #-!. From Egs. (13) and (14), the initial estimation error
can be written as

et = min 5,00, - 71
2 ~k—12

— ||pr! 2 (D6; -777)

” ||2 ”lf\)(sll 2
(QpD6i N Qprk71)2
&b bs;

=lg," |l - (16)

From the properties of the unitary transform: “Qp/“l Hi = Hr’(" ||§
(norm isometry), @, D6; - Q,,r’"1 = Dé§; - r*! (conservation of inner
products), D*D =D* D (conservation of inner products), Eq. (16)
can be rewritten as follows:

( Dé‘[ . rk—l )2

iy = |I*- Do

a7
Equation (17) is equal to Eq. (4)’, i.e. the relation &(i)=€(i) is
satisfied.

- Update Support: Find the minimizer

From é&(i)=¢(i), the following relation is also satisfied.

arg min {&(7)}
iQSk_]

arg min {e(i)}, S* = §*7' U {iy}
igSk=1

o

18)

- Update Provisional Solution:

The square error between the encrypted observed signal and the
estimation by using the current support xg« is represented as E, =
E,

A R 2 N . . ..
”y — Dgixgi Hz From = 0, £ which provides the minimum
Xgk
square error is represented by

= (DuDs) ' (Dgid). (19)

Image Y

il
)

Figure 2: Sparse coding for mage patches.

In addition, from the property 2 in Eq.(11), i);kbsk and IA);,{ ycan
be also given by DA;k Dgi = D;k Dy, DA;k y =D;k y. Therefore, the
provisional solution Eq. (19) can be rewritten as

2 = (DLDs) (D). 20)
Equation (20) is equal to Eq. (6), i.e. the relation K = # is satis-
fied.

- Update Residual:

Residual on the encrypted signals is expressed by # = § - lA)Su?k .
From Eqs. (13)-(14) and equality of the provisional residual £* =
x*, the residual can be rewritten as follows:

i Qpy - QpDSkik =0y - Dsk-fk)
= Q,r.

- Stopping Rule:
If |, < e stop. From Eq. (21) and the norm isometry of the
unitary transform, it can be expressed as follows:

(], = lIprl, = I, < €

The stoping rule is equal to that of the unencrypted version. Unless
it is satisfied, apply another iteration.

ey

(22

Output: The proposed solution £ is obtained after k iterations.

From the above analysis, it is shown that the secure computation
gives the same result as the non-secure computation.

4. APPLICATION TO IMAGE MODELING

The sparse coding model has found numerous applications. In
this section, we consider secure sparse coding for images based on
a patch model.

4.1 Sparse Coding for Image Patches

We consider image patches of size vn X +/n pixels, ordered
lexicographically as column vectors y; € R" (i = 1,--- ,N). The
patches are extracted from an image Y as shown in Fig. 2. We as-
sume that every image patch y; could be represented sparsely over
the overcomplete dictionary D € R™K,

Yi = Dx;, (23)

where x;€ RX (i = 1,---,N) is sparse coefficients, N is the total
number of patches. Applications for image compression, image
denoising and image separation cited in Ref. [2] is based on the
image patch model. In advance, the dictionary D is designed for
images by training algorithms such as MOD [12], K-SVD [13] al-
gorithms in the local site.

For example, sparse coding for image patches mentioned above
can be applied to Encryption-then-Compression (EtC) systems [8].
In conventional secure image transmission systems, image encryp-
tion has to be conducted prior to image compression. On the other

X;€ RK
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hand, EtC systems where image encryption can be conducted prior
to compression, are expected for privacy protection. This scheme
is able to compress images on the cloud while keeping security of
image data.

4.2 Generation of Random Unitary Matrices

For each patch y;, secure OMP computation proposed in the pre-
vious section is applied. The proposed secure sparse coding com-
putation generages an encrypted signal y; and a dictionary D; by
the following transform:

Yi =TOip) =0,y (24)
D, =TD.p)=0,D (25)

where p; and Q,,; are a key and a random unitary transform for the
image patch y;, respectively. For each image patch y;, the sparse
coefficient £ is estimated.

The image quality of each patch y; can be controlled by using
a sparsity ratio s; or a threshold €. The sparsity ratio s; is a ratio
of the number of nonzero sparse coefficients to the total number
of elements of the dictionary ﬁi. The threshold ¢; determines the
stopping condition of the secure OMP algorithm, i.e. “'ﬂ'z <€.In
order to keep image quality of each image patch, the same threshold
is set: ¢ = constant (i = 1,--- , N).

S. NUMERICAL DEMONSTRATION

In order to evaluate the effectiveness of the proposed secure com-
putation, we demonstrated its performance both on synthetic data
and in an application on natural image.

5.1 Synthetic Data

We create a random matrix D of size 30 X 50. Each column was
normalized to a unit ,-norm. We generate sparse vectors x with in-
dependent and identically-distributed (iid) random supports of can-
didates in the range [1,10], and non-zero entries drawn as random
uniform variables in the range [-2,-1] U [1,2]. Once x is generated,
we compute y = Dx. We perform 1000 such test per each cardinal-
ity, and present average results. We present two measures - /,-error
and recovery of the support. The ,-error is computed as the ratio
Ilx - £|1?/Ilx|I*>. Recovery of the support indicates /, proximity be-
tween the two solutions. Denoting the two supports as § and S, we
define this distance by
max{S|,I1S1} =18 N S|}

max{$|,IS )

We apply three algorithms shown below to seek for x.

dist(8,8) = ) (26)

- Method 1: OMP
- Method 2: Secure OMP (Proposed method)
- Method 3: OMP with non-unitary random transform
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In the method 3, we generage the transformed signal y and b by us-
ing a non-unitary random transform instead of the unitary random
transform Q,,. Then apply the OMP to the transformed signals. All
these algorithms seek the solution till the residual is below a certain
threshold (||r])3 < le — 4).

The results are shown in Figs. 4 and 5. Figures 4 and 5 show
that the proposed method gives exactly the same performance to the
OMP in both the measures. On the other hand, the OMP with non-
unitary random transform performs poorly especially in the area of
large cardinality of the true solution. Figure 3 shows a sample of
sparse coefficients x when the cardinality of the true solution is 6.
It also supports the performance of the proposed method is same as
that of the OMP. The unitarity property of the transform proves to
be important.

5.2 Image Modeling

We carried out image modeling experiments on natural image
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data, trying to show the practicality of the proposed algorithm. We
used a pre-trained global dictionary that was trained by the K-SVD
algorithm. The dictionary and a corresponding encrypted dictio-
nary are shown in Fig. 6. Then we applied the secure OMP com-
putation for a 256 x 256 Barbara image. Figure 7 shows an original
image and a corresponding encrypted image.

Feeding the encrypted dictionary and the encrypted image into
the secure OMP computation, we obtained the sparse coefficients
X; for each image patch y;. The synthesis image y; is obtained by
y; = DX;. We carried out the experiments for different stopping
conditions. Figure 8 shows the decompressed/decrypted images
for two condition cases. Average sparsity ratio is an average of
sparsity ratio s; (i = 1,---, N). We confirmed that it provides the
same results as the unencrypted version of the OMP algorithm.

Note that our experiments here come only to prove the concept
of image modeling using secure sparse coding for images based
on patch images. Further study is required to deploy the proposed
image modeling to image processing applications.

6. CONCLUSIONS

In this paper, we proposed the secure computation of sparse cod-
ing using the random unitary transform. We proved that the pro-
posed secure OMP computation has exact the same performance of
sparse coefficients estimation as the OMP algorithm theoretically.
We confirmed the estimation performance of the proposed scheme
through numerical demonstrations from the viewpoint of the rela-
tive ,-norm error and the recovery of the support measures. Then,
we apply it to image modeling based on the image patch model.
Experiment results for natural images showed the practicality of
the proposed algorithm.
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