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Abstract—We present a novel privacy-preserving scheme for
deep neural networks (DNNs) that enables us not to only apply
images without visual information to DNNs but to also consider
the use of independent encryption keys, for both training and
testing images for the first time. In this paper, a novel pixel-
based image encryption method, which considers maintaining
the properties of original images, is first proposed for privacy-
preserving DNNs. For training, a DNN model is trained with
images encrypted by using the proposed method under the
use of independent keys. For testing, the model enables us
to applied both encrypted images and plain images for image
classification. Therefore, there is no need to manage the keys. In
an experiment, the proposed method is applied to a well-known
network, deep residual networks, for image classification. The
experimental results demonstrate that the proposed method with
independent encryption keys has robustness against ciphertext-
only attack (COA) and can provide almost the same classification
performance as that of using plain images. Moreover, the results
confirm that the proposed scheme is able to classify plain images
as well as encrypted images.

I. INTRODUCTION

The spread of deep neural networks (DNNs) has greatly
contributed to solving complex tasks for many applications
[1], [2], such as for computer vision, biomedical systems,
and information technology. Deep learning utilizes a large
amount of data to extract representations of relevant features,
so the performance is significantly improved [3], [4]. However,
there are security issues when using deep learning in cloud
environments to train and test data, such as data privacy,
data leakage, and unauthorized data access. Moreover, DNNs
can be vulnerable if adversaries carry out model inversion
attacks [5], [6] to obtain trained data from the trained model.
Therefore, privacy-preserving DNNs have become an urgent
challenge.

Various methods have been proposed for privacy-preserving
computation. The methods are classified into two types:
perceptual encryption-based [7]–[20] and homomorphic en-
cryption (HE)-based [21]–[29]. As described in Section II,
HE-based methods are the most secure options for privacy
preserving computation, but they are applied to only limited
DNNs [25]–[29]. Therefore, the HE-based type does not sup-
port state-of-the-art DNNs yet. Moreover, data augmentation
has to be done before encryption. In contrast, perceptual
encryption-based methods have been seeking a trade-off in
security to enable other requirements, such as a low processing
demand, bitstream compliance, and signal processing in the

encrypted domain [7]–[20]. A few methods were applied to
machine learning algorithms in previous works [7], [8]. The
first encryption method [11]–[17], which has been proposed
for encryption-then-compression (EtC) systems, was demon-
strated to be applicable to traditional machine learning algo-
rithms, such as support vector machine (SVM) [7]. However,
the block-based encryption method has never been applied to
DNNs. Another method [8] was applied to image classification
with DNNs, in which an adaption network is added prior to
DNNs to avoid the influence of image encryption. However,
the classification accuracy is lower than that of plain images,
and it is proved that data augmentation in the encrypted
domain cannot be applied to Tanaka’s scheme [20]. Although
a pixel-based image image encryption method [20] was pro-
posed not only to improve the classification performance
of the privacy-preserving DNNs but also to consider data
augmentation in the encrypted domain, training and testing
images are encrypted under only the use of common security
keys. In addition, the security level of the encryption method
is only evaluated in terms of key space analysis for brute-force
attack.

In this paper, we propose a novel privacy-preserving method
for DNNs that enables us to not only apply images without
visual information to DNNs for both training and testing
but to also consider the use of independent encryption keys,
which means that all images are encrypted by using different
security keys, for the first time. Moreover, the proposed
method provides the availability for clients to classify plain
images although DNNs are trained by encrypted images.

In an experiment, we compare the proposed method with
conventional perceptual encryption-based methods. The exper-
imental results show that the proposed method with indepen-
dent encryption keys has robustness against COA so that the
visual information cannot be reconstructed. In addition, the
proposed methods with DNNs performs better in classifica-
tion than conventional block-based and pixel-based encryption
schemes and can provide almost the same classification per-
formance as plain images. We also confirm that the proposed
scheme is able to classify plain images as well as encrypted
images.
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II. RELATED WORKS

A. Visual Information Protection

Security mostly refers to protection from adversarial forces.
This paper focuses on protecting visual information that allows
us to identify an individual, the time, and the location of
the taken photograph. Untrusted platforms and unauthorized
users are assumed to be adversaries. Moreover, images used
for training a DNN model can be reconstructed from the DNN
model [5], [6]. If the model is trained with the images without
visual information, visual information of the trained images is
still protected although the model inversion attacks are carried
out.

Various perceptual image encryption methods [7]–[19] have
been proposed for protecting the visual information of images.
Compared with full encryption with provable security like
homomorphic encryption (HE), they generally have a low
computational cost and can offer encrypted data robust against
various kinds of noise and errors. In addition, some of them
aim to consider both security and efficient compression so that
they can be adapted to cloud storage and network sharing [11]–
[18]. However, with the exception of a few previous pieces of
work, most conventional perceptual encryption methods have
never been considered for application to machine learning
algorithms [7], [8]. Although a pixel-based image image
encryption method [20] has been proposed to improve the
classification performance of the privacy-preserving DNNs
and consider data augmentation in the encrypted domain,
training and testing images are encrypted under only the use
of common security keys.

B. Privacy-Preserving Machine Learning

As mentioned above, three perceptual image encryption
methods have been studied for privacy-preserving machine
learning so far [7]–[18], [20]. The first encryption [7], [9]–
[18], which has been proposed for EtC systems, is applicable
to tradition machine learning algorithms, such as support vec-
tor machine (SVM), k-nearest neighbors (KNN), and random
forest even under the use of the kernel trick [7]. However,
its block-based encryption method has never been applied
to DNNs. The other [8] was applied to image classification
with DNNs, but the accuracy is lower than that when using
plain images, and the influence of data augmentation in the
encrypted domain cannot be avoided yet. In contrast, the pixel-
based image image encryption method [20] has been proposed
to improve the classification performance of the privacy-
preserving DNNs and consider data augmentation in the
encrypted domain. However, the existing privacy-preserving
DNNs train the DNNs under the use of common security keys,
so the key management is required. Examples of encrypted
images are shown in Fig. 1.

Alternatively, privacy-preserving machine learning methods
with homomorphic encryption (HE) [25]–[29] have been stud-
ied. One is CryptoNet [28], which can apply HE to the influ-
ence stage of CNNs. CryptoNet has very high computational
complexity, so a dedicated low computer convolution core

(a) Original image (X × Y =
96× 96)

(b) Block-based encryption [11],
[13] (Block size=4× 4)

(c) Block-based encryption [8]
(Block size=4× 4)

(d) Pixel-based image encryption
[19]

Fig. 1: Examples of images encrypted by conventional
schemes

architecture for CryptoNet was proposed and implemented
with a CMOS technology [29]. In CryptoNet, all activation
functions and the loss function must be polynomial functions.
Therefore, it cannot be applied to state-of-the-art DNNs.
Moreover, CryptoNet does not allow us to carry out data
augmentation in the encrypted domain, in addition to the high
computation complexity.

One approach with HE has been proposed for privacy-
preserving weight transmission for multiple owners who wish
to apply a machine learning method over combined data
sets [25]–[27]. However, this approach can not be applied to
network training in the encrypted domain.

In this paper, we aim to propose the novel privacy-
preserving DNN that enables us to train a DNN model with
images encrypted by using the pixel-based image encryption
under the use of independent encryption keys. Then, the model
is applied with encrypted images or plain images to obtain the
classification results. As a result, the key management is not
required by the proposed privacy-preserving DNNs.

III. PROPOSED METHOD

A. Overview of Privacy Preserving DNNs

Figure 2 illustrates the scenarios used in this paper. In the
training process, data augmentation is first carried out to each
training image, ITr,i, i = 1, 2, . . . , g. Then, a client u encrypts
the training images to protect the visual information of the
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Fig. 2: Scenario

training images by using a training secret key set, KTr,i, and
sends the encrypted images (IeTr,i

) to a cloud server.
There are two testing scenarios used in this paper.
• Scenario 1: The client u encrypts testing images, ITe,i,

i = 1, 2, . . . , h, by using a testing secret key set, KTe,i,
and sends the encrypted image IeTe,i

to a server, as shown
in Fig. 2(a).

• Scenario 2: The client u sends the plain image ITe,i to
a server, as shown in Fig. 2(b).

Then, the server solves a classification problem with an image
classification model trained in advance, and then returns the
classification results to the client.

Note that the server has no secret key, so clients are able
to control the privacy of images by themselves even when the
classification process is done in the server.

Although the conventional privacy-preserving DNNs [20]
considers to encrypt training and testing images by using a
common security key, we assume that there are two encryption
key conditions for generating encrypted images as follows.
• Same encryption key: Like the conventional method [20],

all training and testing images are encrypted by using
only one secret key, i.e. KTr,1 = KTr,2 = . . . =
KTr,g = KTe,i = K.

• Different encryption keys: The different secret keys are

(a) Negative-positive transformation (b) Negative-positive
transformation and color shuffling

Fig. 3: Examples of images encrypted by the pixel-based
image encryption method
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Fig. 4: Proposed image encryption

independently assigned to training and testing images, i.e.
KTr,1 6= KTr,2 6= . . . 6= KTr,g 6= KTe,i.

B. Proposed Image Encryption

In this section, we present a novel perceptual image encryp-
tion method that aims not only to relax the limitations of using
encrypted images in DNNs but to also enhance security.

To generate an encrypted image (Ie,i) from a color image,
Ii, the following steps are carried out, as shown in Fig. 4. Note
that the color shuffling (Step 3) is an optional encryption step
to enhance security.

1) Divide Ii with X × Y pixels into pixels.
2) Individually apply negative-positive transformation to

each pixel of each color channel, IR,i, IG,i, and IB,i, by
using a random binary integer generated by secret keys
Kc,i = {KR,i,KG,i,KB,i}. In this step, a transformed
pixel value of the j-th pixel, p′, is calculated using

p′ =

{
p (r(j) = 0)
p⊕ (2L − 1) (r(j) = 1)

, (1)

where r(j) is a random binary integer generated by Kc,i.
p is the pixel value of the original image with L bit per
pixel. The value of the occurrence probability P (r(j)) =
0.5 is used to invert bits randomly [16].

3) (Optional) Shuffle three color components of each pixel
by using an integer randomly selected from six integers
generated by a key Ks,i as shown in Table I.

Images encrypted by using the pixel-based method are
illustrated in Fig. 3, where Fig. 1(a) is the original one. It is
proved that the visual information of images was protected as
in Fig. 1(d).
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TABLE I: Permutation of color components for random in-
teger. For example, if random integer is equal to 2, red
component is replaced by green one, and green component
is replaced by red one while blue component is not replaced.

Random Integer Three Color Channels
R G B

0 R G B
1 R B G
2 G R B
3 G B R
4 B R G
5 B G R

C. Properties of Encrypted Images

Image encryption methods for privacy-preserving DNNs
have to meet the following requirements.
• Visual information protection: to protect an individual,

the time, and the location of the taken photograph.
• Security: to provide the robustness against COA.
• Low damage to DNNs: to maintain the performance of

DNNs as plain images.
Although block-based encryption methods [7], [9]–[17] can

protect the visual information, the encryption causes much
damage to DNNs due to the loss of positional information
in the spatial domain, so the performance of DNNs is heavily
decreased compared with the plain images.

In comparison, the block-based encryption proposed by
Tanaka [8] can reduce the damage to DNNs by using an adap-
tation network. However, the block-based encryption including
Tanaka’s method [7]–[17] are not secure enough against COA
if training and testing images have low resolutions.

The conventional pixel-based encryption [19] can protect
the visual information, as shown in Fig. 1(d), and it can
provide a higher security level against COA than the block-
based encryption even when images have low resolutions.
However, it causes much damage to DNNs because the pixel-
based method does not consider maintaining the properties of
original images.

In contrast, the proposed pixel-based encryption considers
maintaining the properties of original images to reduce the
damage to DNNs. The encryption steps, negative-positive
transformation and color component shuffling, can be ex-
pressed as an orthogonal transformation, so the encrypted
images can maintain the relation among original images [7].
Moreover, as the proposed encryption is a pixel-based one,
high level of security is maintained even if images have low
resolutions. Hence, the proposed encryption is expected to
outperform the conventional encryption methods.

D. Robustness against ciphertext-only Attacks

Security mostly refers to protection from adversarial forces.
In this paper, we consider brute-force attack and propose a
novel DNN-based COA for the pixel-based image encryption.

1) Brute-force Attack: If Ii with X × Y pixels is divided
into pixels, the number of pixels n is given by

n = X × Y. (2)

I
e,i

C
1

M1

Locally 

Connected

Layer

I'
C
2

M2 C
3

M3

Locally 

Connected

Layer

Locally 

Connected

Layer

i

Fig. 5: Proposed DNN-based COA

The key spaces of negative-positive transformation (Nnp)
and color component shuffling (Ncol) are represented by

Nnp(n) = 23n, Ncol(n) =
(
3P 3

)n
= 6n. (3)

Consequently, the key space of images encrypted by using
the proposed encryption scheme, N(n), is represented by the
following.

N(n) = Nnp(n) ·Ncol(n)
= 23n · 6n (4)

In contrast, in Tanaka’s method [8], Ii with X × Y pixels
is divided into blocks each with 4× 4 pixels, and each block
is split into upper 4-bit and lower 4-bit images to generate
6-channel image blocks. Then, the intensities of randomly
selected pixels are reversed. Eventually, the pixels in each
block are shuffled with the same pattern.

The key space of Tanaka’s method [8], Ntanaka, is given
by

Ntanaka = 96! · 296. (5)

N(n) is equal to Ntanaka when n is approximately equal
to 106.4. Therefore, the proposed encryption has a larger key
space than Tanaka’s method if X × Y = 11× 11 pixels.

2) DNN-based ciphertext-only Attack: we propose a novel
DNN-based COA that aims to reconstruct the visual infor-
mation of encrypted images. Since the encryption method
is a pixel-based one, the proposed DNN for COA consists
of three 1×1-locally connected layers, which work similarly
to 1×1-convolution layer, except that weights are unshared.
Figure 5 illustrates the proposed attack where CMk

k is the
k-th locally connected layer of the network with a kernel
size and stride of (1,1), Mk is the number of feature maps
of the k-th locally connected layer, k ∈ {1, 2, 3}, and I ′i
denotes a reconstructed image. The representations of each
encrypted pixel are extracted in the first two layers, and then
the reconstructed pixels are obtained by the last layer.

IV. EXPERIMENTS

A. Robustness against ciphertext-only Attack

1) Experimental Conditions: We employed STL-10 dataset,
which contains 96×96 pixel color images and consists of 5,000
training images and 8,000 testing images [30].

In the experiment, the numbers of feature maps, M1, M2,
and M3, were set to 8, 32, and 3, respectively.

The network was trained by using stochastic gradient
descent (SGD) with momentum for 70 epochs, and used
mean squared error (MSE), which compares the differences
between the reconstructed images and the original ones, as a
loss function. The learning rate was initially set to 0.1 and
decreased by a factor of 10 at 40 and 60 epochs. We used a
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(a) Same encryption key (b) Different encryption keys

Fig. 6: Examples of reconstructed images from the images
encrypted by the negative-positive transformation and color
shuffling.

TABLE II: Average SSIM of the reconstructed images com-
pared with the original ones.

Key Conditions Encryption SSIM

Same encryption key Step 2 0.1732
Step 2 and 3 0.1715

Different encryption keys Step 2 0.0424
Step 2 and 3 0.0425

weight decay of 0.0005, a momentum of 0.9, and a batch size
of 128.

2) Results: Examples of reconstructed images under the
use of same and different encryption keys are shown in Fig. 6,
where Fig. 1(a) is the original one. The visual information
of the reconstructed images was recovered by the proposed
scheme if the images are encrypted under same encryption
key, as shown in Fig. 6(a). This is because each image was
encrypted with only one pattern, so the proposed attack can
recognize the pattern and recover the visual information by
comparing the difference between reconstructed images and
original images. In comparison, the pixel-based encryption
method has robustness against COA if the training images are
encrypted by using different encryption keys. Therefore, the
visual information cannot be recovered, as shown in Fig. 6(b).

Table II shows that the structural similarity (SSIM) values
of the encrypted images under the use of same encryption key
were much higher than under the use of different encryption
keys.

B. Image Classification

To confirm that the proposed scheme is effective, we evalu-
ated the performance in terms of image classification accuracy
and compared it with conventional privacy-preserving meth-
ods.

1) Experimental Conditions: We employed CIFAR10,
which contains 32 × 32 pixel color images and consists of
50,000 training images and 10,000 test images in 10 classes
[31]. Standard data augmentation (shifting and random hori-
zontal flip) was used.

The network was trained by using SGD with momentum
for 300 epochs. The learning rate was initially set to 0.1 and

TABLE III: Image classification accuracy when testing with
encrypted images IeTe,i

. (ResNet-18)

Encryption Accuracy (%)
Same Key Different Keys

Plain Image 93.52
Proposed (step 2) 93.01 92.96

Proposed (steps 2 and 3) 90.85 90.97
Tanaka’s Scheme [8] 90.41 32.69

Pixel-based [19] 72.15 67.91
EtC [11], [12] 82.32 52.56

TABLE IV: Image classification accuracy when testing with
plain images ITe,i. (ResNet-18)

Training Data Accuracy (%)
Plain Image 93.52

Proposed (step 2) Same Key 91.47
Different Keys 92.16

Proposed (steps 2 and 3) Same Key 87.62
Different Keys 90.46

Tanaka’s Scheme [8] Same Key 26.68
Different Keys 39.39

was decreased by a factor of 10 at 150 and 225 epochs. We
used a weight decay of 0.0005, a momentum of 0.9, and a
batch size of 128.

The proposed encryption was used to encrypt all training
and testing images, and networks were then trained and tested
by using the encrypted images, as shown in Fig. 2. We uti-
lized two encryption key conditions to evaluate how different
encryption keys affect the image classification performance.
We evaluated the image classification accuracy of encrypted
images under the use of deep residual networks (ResNet-18)
[32], [33], which consists of 18 layers.

2) Results: Table III shows that the classification accuracy
when the trained model is tested by IeTe,i

. The results
showed that the proposed method outperformed other en-
cryption methods even when images were encrypted under
different encryption keys. In comparison, the accuracy of other
methods were heavily degraded when images were encrypted
under different encryption keys. Therefore, it was proved that
the proposed method causes low damage to DNNs because
the proposed encryption not only provides the comparable
classification accuracy as that of plain images but also enables
the use of different encryption keys without any effects to the
classification performance.

Table IV shows that the classification accuracy when the
trained model is tested by ITe,i. It was confirmed that the
proposed method under the use of different keys enables us not
to only test DNNs with plain images but to also outperform the
method under the use of same key. In addition, under the use
of different keys, the classification accuracy when testing with
ITe,i was almost the same as that when testing with IeTe,i

. In
comparison, the models trained by Tanaka’s method [8] are
not able to classify ITe,i As a result, it was proved that the
proposed method maintains the important properties of plain
images even when the visual information is protected.
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V. CONCLUSION

We presented a novel privacy-preserving scheme for deep
neural networks (DNNs) that enables us not to only apply
images without visual information to DNNs but to also con-
sider the use of different encryption keys for both training and
testing images for the first time. The novel pixel-based image
encryption was proposed to protect the visual information of
images and be available for training and testing DNNs. In
addition, the proposed privacy-preserving scheme for DNNs
allowed us to train a DNN model with encrypted images,
and then test it with plain images without any classification
performance degradation. In an experiment, we evaluated the
performance of the proposed method in terms of the robustness
against COA, and the classification accuracy. The experimental
results demonstrated that the proposed method with different
encryption keys has robustness against COA; therefore, the
visual information cannot be reconstructed. Moreover, the
proposed method can provide almost the same classification
performance as that of using plain images even when the
training images and testing images are encrypted by using
different encryption keys. The results confirmed that the
proposed scheme is able to classify plain images without
any performance degradation, as well as classifying encrypted
images.
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