Abstract—In this paper, we propose a novel data augmentation method based on image enhancement. When training CNN models for image classification, it is required to prepare sufficient training data taken in various conditions. However, traditional data augmentation methods are limited to physical transformation, and shooting conditions of images, so exposure conditions lack for data augmentation. Therefore, we utilize an image enhancement method to generate images with different exposures, although enhanced methods are generally used for generating high-quality images. Experimental results show that the proposed method improves the classification accuracy of a CNN model. The results also demonstrate that combining the proposed method with other existing data augmentation methods provides further improvement of the classification accuracy.

I. INTRODUCTION

In recent years, with the growing of convolutional neural networks (CNNs), it has become the most important way to solve various problems such as image classification. CNN models still have many problems that need to be addressed. The most common problem is lack of training samples or uneven class balance within the datasets [1]-[2]. However, collecting a huge amount of images for training is very difficult and costly. Therefore, various data augmentation methods have been proposed. For example, commonly-used methods are random cropping [3], flipping [4], random erasing [5] and GAN-based augmentation [6].

These data augmentation methods focus only on physical transformation, e.g., rotation, shifting and scaling. However, they do not take into account image brightness or contrast despite the fact that images are captured in various shooting conditions including exposure conditions. For this reason, there are some augmentation methods that simply manipulate image brightness or contrast, but these methods do not consider the imaging pipeline of digital cameras.

Because of this situation, we propose a novel data augmentation method on the basis of image enhancement. For the proposed method, we use an image enhancement method: Automatic exposure compensation for single-image-based multi-exposure fusion [7]-[8] method which considers the imaging pipeline. Experimental results show that the proposed data augmentation method can improve the performance of CNN model. In addition, the proposed method is demonstrated to be able to be combined with commonly-used data augmentation methods.

II. PROPOSED METHOD

The framework of the proposed method is shown in Fig. 1. The core idea of the proposed method is to use an image enhancement method using pseudo multi-exposure (ME) images. The use of the proposed method enables us to produce a training set that includes dark, middle, and bright images.

For the proposed method, we use an conventional image enhancement method: Automatic exposure compensation for single-image-based multi-exposure fusion [7]-[8]. The procedure for generating pseudo ME images by using the method is summarized as follows:

1. Calculate luminance \(L\) from an input image\(I\).
2. Enhance the local contrast of \(L(p)\) at a pixel \(p\) by:
 \[
 L'(p) = \frac{L'(p)}{L_a(p)},
 \]
 where \(L_a(p)\) is the local average of luminance \(L\) around pixel \(p\).
3. Separate an image area based on luminance distribution by
 \[
 p_m = \{p \mid \theta_m \leq L'(p) \leq \theta_{m+1}\},
 \]
 \[
 \theta_m = \frac{M - m + 1}{M} (\max L'(p) - \min L'(p)) + \min L'(p),
 \]
 where \(M\) is the number of separated scene areas and \(p_m\) indicates the \(m\)-th area.
4. Calculate scaled luminance \(L^*_m\) which clearly represents an area \(p_m\) by
 \[
 L^*_m(p) = \alpha_m L'(p),
 \]
The GE reduction of the proposed method is expressed as

\[
\alpha_m = \frac{0.18}{g(L'[P_m])},
\]

where \(g(L'[P_m]) \) is the geometric mean of luminance \(L' \) on area \(P_m \).

Tone map scaled luminance \(L''_m \) to \(\hat{L}_m \) by

\[
\hat{L}_m(p) = \frac{L''_m(p)}{1 + L''_m(p)} = \frac{1 + L''_3(p)}{L''_m(p)},
\]

Generate a pseudo ME image \(\hat{I}_m \) by

\[
\hat{I}_m(p) = \hat{L}_m(p) I(p).
\]

Since parameter \(M \) controls the number of separated scene areas, we generated \(M \) pseudo ME images by setting \(M \) to a desirable number.

SIMULATION

Simulation condition

We trained a CNN model for image classification by using two databases: the GTSRB database [9], and the well-known CIFAR-10 database [10] (see Table I). The CNN model that we used in the simulations was ResNet-18 and it was trained under the conditions shown in Table I. To simulate the case that we have insufficient training samples, we constructed two training sets, called "1/4 set" and "1/8 set", from each of GTSRB and CIFAR-10. For constructing the 1/4 set, a quarter of a set of images in each class was randomly selected. For constructing the 1/8 set, a half of a set of images in each class from the 1/4 set was randomly selected.

The proposed method augmented the original set and the 1/4 set by 4 times, and the 1/8 set by 8 times. Examples of images generated by the proposed method are shown in Fig. 2.

Simulation result

Table II shows the classification accuracy under the use of models trained without any data augmentation (Plain) or with the proposed data augmentation method (Proposed). For calculating the accuracy, we trained the CNN model five times and the mean and standard deviation of accuracy were calculated. From Table II, the proposed method improved the classification accuracy for all six cases, especially for cases with insufficient training samples.

Table III shows the effectiveness of combining the proposed method with commonly-used augmentation methods in terms of classification accuracy for the 1/4 set. Random rotation (in which rotation angle is in [−30°, 30°]) and random crop with a size of 32×32 and a padding of 4 were used as the commonly-used methods. From Table III, combining the proposed method with the commonly-used method further improved the performance of the model.

IV. Conclusion

In this paper, we proposed a novel data augmentation method based on image-enhancement for improving CNN models. The proposed method is based on an image enhancement method using pseudo ME images to generate images with various brightness. Experimental results showed that the proposed augmentation method improved the performance of model. The results also demonstrated that combining the proposed method with commonly used data augmentation methods yielded better performance in image classification.

REFERENCE

